

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2020

(Under CBCS Pattern)

Semester - III

Subject: CHEMISTRY

Paper : C 5-T & C 5-P

(Physical Chemistry - II)

Full Marks: 60 (Theory-40 + Practical-20)

Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

[THEORY]

Answer any two questions:

 $2 \times 20 = 40$

- 1. (a) "Viscosity of a iquid decreases with increase in temperature"—why?
 - (b) Do you find any inconsistency in the statement—"equivalent conductance of 0.01 (M) KCl is greater than its specific conductance".
 - (c) What is abnormal transport number?
 - (d) Write the Van't Hoff's reaction isobar.
 - (e) Are all the reactions are reversible? explain.
 - (f) What is fugacity? How it different from pressure?
 - (g) $[x, P_x] = ?$

	(h)	Normalize the function : $\sin x (0, 2 \pi)$	
	(i)	Do the x and d/dx commute?	
	(j)	Define chemical polential. what is its significance?	2×10=20
2.	(i)	(a) State the Fick's law of diffusion in liquids and find out the dimension efficient of diffusion.	on of the co-
		(b) The viscosity co-efficient of gaseous CO_2 at 27°C s 15 x 10 ⁻⁴ Poi molecular diameter.	ise. Find its
	(ii)	(a) What would be the effect of dilution on the magnitude of the following of a strong electrolyte? Conductivity, equivalent conductivity. Explain with the conductivity of a strong electrolyte?	O 1 1
		(b) The mobility of NH_4^+ is $7.623 \times 10^{-8} m^2 v^{-1} s^{-1}$. Calculate its ionic co	•
			4
		(c)Define transport number.	2
3.	(i)	(a) Derive Gibbs-Duhem relation for chemical potential.	3
		(b) Can equilibrium constant be independent of temperature?	2
	(ii)	(a) What are limitations of Nernst's distribution law.	2
		(b) Write the Raoult's law for ideal solution. Mention its deviations.	3
	(iii)	(a) Find the lowest kinetic energy of an electron in a rectangular box of 1×10^{-13} cm, 1.5×10^{-13} cm and 2×10^{-13} cm.	dimensions 3
		(b) What is the eigen value of the eigen function e^{-ax} of P_x operator?	2
	(iv)	(a) What is the physical significance of zero point energy with respect to principle for simple Harmonic oscillator?	uncertainty 3
		(b) Prove that Hermitian operators give real eigen values.	2
4.	(i)	(a) Predict the nature of changes expected into ther following cases:	
		i) Liquid = Vapour; Heat is applied.	
		ii) $2CO + O_2 = 2CO_2$; Volume of the system is decreased.	3
		(b) For a certain reaction $\Delta G^{o} = 0$; What is the value of equilibrium of	constant?
		(c) Write the Ostwald's dilution law and explain.	2½
		(d) Write the principles of moving-boundary method.	2½

(a) The equivalent conductance at 18°c of a 0.01 N aquous solution of ammonia is (ii) 9.6 ohm⁻¹cm²equiv⁻¹. For NH₄C1 \land 0 = 129.8 and ion conductances of OH⁻ and Cl⁻ ions are 174 and 65.6, respectively. Calculate the degree of dissociation of 0.01N NH₄OH. (b) From the Van't Hoff's isotherm, what do you expect the type of the polot of ΔG and T. (c) When a conductometric titration is possible? 2 (d) Can pH of a solution be negative? 2 (e) What is linear operator? Is d^2/dx^2 a linear operator? Paper - C-5-P (Physical Chemistry - II) (Practical) Discuss any one of the following experiments with respect to working principle experimental procedure and nature of polt. $1 \times 20 = 20$ 1. Study of viscosity of (glycerol) with respect to water. 20 2. Determination of partition coefficient for the distribution of I₂ between water and CHCl₃. 20 3. Conductometric titration of an acid (strong, weak/monobasic, dibasic) against strong base. 20