

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2020

(Under CBCS Pattern)

Semester - V

Subject: CHEMISTRY

Paper: C11T & C11P

(Inorganic Chemistry - IV)

Full Marks : 60 Time : 3 Hours

Candiates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Group - A

THEORY (Marks: 40)

Answer any *two* from the following questions :

2×20

- 1. (a) $\left[Fe(H_2O)_6\right]^{3+}$ is strongly paramagnetic whereas $\left[Fe(CN)_6\right]^{3-}$ is weakly paramagnetic-explain.
 - (b) Simple Cu (I) salts are not stable in aqueous solutions why?
 - (c) What is meant by lanthanide contraction?

	(d)	Chromium (II) acetate monohydrate is diamagnetic though it possesses d ⁴ electronic configuration — explain.
	(e)	The spectrum of $\left[Ti(H_2O)_6\right]^{3+}$ is broad with a shoulder — why?
	(f)	Draw a plot of $\frac{1}{\chi_m}$ vs Temperature (<i>K</i>) for materials which obey (i) Curie law (ii) Curie-
		Weiss law. χ_m = Magnetic susceptibility.
	(g)	What do you mean by normal and inverse spinel ? $3+3+3+3+3+3+2$
2.	(a)	Write a short note on Nephelauxetic effect?
	(b)	Electronic spectrum of $\left[V(H_2O)_6\right]^{3+}$ shows two peaks – explain using Orgel diagram.
		3
	(c)	Predict whether Co_3O_4 normal or inverse spinel. 5
	(d)	Acidified $K_2Cr_2O_7$ solution turns green when sodium sulphite solution is added to it — explain. 2
	(e)	The position of the halide ions in spectrochemical series is $I^- > Br^- > CI^- > F^-$ explain with the help of MO theory. 3
	(f)	Fe^{3+}/Fe^{2+} redox couple has less positive electrode potential than Mn^{3+}/Mn^{2+} — give the
		reason. 5
3.	(a)	Give an example of antiferromagnetic substance. 2
	(b)	Discuss about the Laporte selection rule and spin selection rule for electronic spectral transition.
	(c	Blue colour of turns bulls blue is less intense than that of Prussian blue — why? 3
	(d)	What is spin state equilibrium ?3
	(e)	Discuss the nature of John-Teller distortion for an octahedral <i>Mn</i> (III) complex ion. 2
	(f)	The second and third row transition elements have almost similar radii — explain. 4
	(g)	Write down an example of reaction where $KMnO_4$ acts as an oxidising agent. 3

- 4. (a) $Mn^{2+}(aq.)$ is faintly coloured whereas aqueous solution of MnO_4^- is highly coloured explain.
 - (b) Give two limitations of CFT.
 - (c) $K_2 C r_2 O_7$ is an oxidant in acidic medium but $KMnO_4$ is an oxidant in both acidic and alkaline medium explain.
 - (d) An octahedral Ni(II) complex or a tetrahedral Co(II) complex show magnetic moment higher than $\mu_{s.o}$ value give the reason.
 - (e) Write down main differences between lanthanides and actinides.
 - (f) Mention the condition for orbital contribution to spin only magnetic moment value.
 - (g) Briefly expflain the principle of separation of lanthanides by ion exchange method.
 - (h) Explain the formation of square planar complexes by showing crystal field splitting diagram. 2+2+2+2+2+2+4+4

Group - B

PRACTICAL (Marks: 20)

Answer any *one* from the following questions : 1×20

- 1. Describe the method of estimation of AI(III) by precipitating with oxine and weighing as Al(oxine)₃ (aluminium oxinate).
- 2. Discuss the separation procedure of Ni (II) and Co (II) applying paper chromatograply.
- 3. Discuss the measurement of 10 Dq by spectrophotometric method.